
Python Challenge
There’s no substitute for practice when it comes to learning a new skill!

Python syntax is simple to learn, but becoming an expert in writing programs to solve

different kinds of problems takes a bit longer. That’s why this book has a short explanation

of each new statement or technique, followed by one or more examples and then loads of

practice challenges.

Some of the challenges will take you only a minute or two, using the Python Interactive

window to try out new statements and get immediate results. As you get further into the

book, you will be challenged to write programs to perform different kinds of tasks - for

example to find the results of a calculation, write a program for a simplified cash machine,

sort a list of items into alphabetical order, or to record data in a text file to be read,

formatted, and printed.

The programming solutions to some challenges have been helpfully simplified for an

inexperienced programmer to modify rather than to write from scratch. This builds your

confidence in problem-solving. That’s why 35 challenges consist of partially written
programs for you to complete.

You’ll find all the solutions to the Python programs in a free downloadable pack from
www.clearrevise.com or www.pgonline.co.uk.

Python
Challenge

P
yth

o
n

 C
h

allen
g

e							

P

M
 H

eath
co

te

Learn to program fast in:
155	Challenges
	 53	 Examples
	85	 Pages

! Helpful programming tips

Coded solutions with answers given in the back of the book

Starred challenges – Partially written programs for you to complete

PM Heathcote

Python Challenge
Learn to program fast in
155	Challenges
	 53	 Examples
	85	 Pages

Published by
PG Online Limited
The Old Coach House
35 Main Road
Tolpuddle
Dorset
DT2 7EW
United Kingdom

sales@pgonline.co.uk
www.pgonline.co.uk
2021

ACKNOWLEDGEMENTS
Every effort has been made to trace and acknowledge ownership of copyright. The publishers will be happy to make any
future amendments with copyright owners that it has not been possible to contact. The publisher would like to thank the
following companies and individuals who granted permission for the use of their images in this textbook.

MIX
Paper from

responsible sources

FSC® C007785

®

All sections
Design and artwork: Jessica Webb / PG Online Ltd
Graphics / images: © Shutterstock

First edition 2021. 10 9 8 7 6 5 4 3 2 1
A catalogue entry for this book is available from the British Library
ISBN: 978-1-910523-35-3
Contributor: PM Heathcote
Copyright © PG Online 2021
All rights reserved
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means without the prior written permission of the copyright owner.

Printed on FSC® certified paper by Bell and Bain Ltd, Glasgow, UK.

ii

Introduction	 ..iv	 

Chapter 1	 Getting started...1	 

Chapter 2	 Data types and operators...11	 

Chapter 3	 Selection.. 19	 

Chapter 4	 Iteration.. 27	 

Chapter 5	 Arrays and lists..35	 

Chapter 6	 Strings...43	 

Chapter 7	 Subroutines...53	 

Chapter 8	 Turtle graphics.. 61	 

Chapter 9	 Searching and sorting..67	 

Chapter 10	 Reading and writing text files... 77	 

Syntax guide	 ... 90

Index	 ..92



CONTENTS AND CHECKLIST

Start here
Just follow the line

iii

INTRODUCTION

Learn (through explanations and examples)

•	 Each new concept, Python statement or programming technique is carefully explained and one
or more examples given. All the example programs are given in the Examples folder of the free
Python programs pack, and you can copy, run and edit them if you wish.

Practice (with more than 150 challenges)

As each new statement or programming technique is introduced, several practice challenges are given
for you to use newly learned skills in writing, editing and running programs.

The challenges are of three different types:

•	 Short challenges that ask you to write a Python statement or answer a question.
You will find the answers to these challenges in the back of the book.

•	 Challenges that ask you to write and test a program. For these, you need to create your
own folder to write, save, edit and run your programs. You could call the folder, for example,
My Python solutions. You will find suggested solutions to all these challenges in a folder
called Challenge solutions. This is a subfolder of the Python programs folder.

•	 Challenges that consist of a partially written program for you to complete. These are all
identified with a star and are held in a subfolder of the Python programs folder called
Starred challenges (incomplete). You should download this entire folder to your own
computer. When you are ready to do one of these programming challenges, copy the
incomplete program to your own folder and rename it,
e.g. Chapter 1 Challenge 8 (your initials).py. Then complete this program and test it.

Completed solutions to these partially written programs are also held in in the Challenge solutions
folder. If you get stuck, you can look at the suggested solution, and compare it with yours. There are
often several ways of writing correct Python statements to solve the problem, so don’t worry if your
solution is not identical to the one given. Just make sure yours works correctly!

Review (by selecting topics, regular and starred challenges)

As you work through the book, and the challenges become longer, you will be constantly revisiting
statements and techniques you have already covered, using them in different ways. And, if you have
already done a Python course and just need to revise what you have already learned, this book is ideal.

Download the free Python programs pack from www.clearrevise.com or
www.pgonline.co.uk.

There is a quick reference guide to all of the basic Python syntax at the back of this book.
Download and run syntaxsummary.py from the Python programs folder.

Before you start!

iv

1CHAPTER 1
GETTING STARTED

Python is one of the most popular text-based
programming languages, widely used in schools
and colleges, and also in web development, game
development, artificial intelligence, business, computer-
aided design and many more applications.

Python has two modes of entering and running
programs. In interactive mode, you can type
instructions and Python will respond immediately. This
is very useful for trying out statements that you are not
sure about, and is a good place to start.

Download Python from www.python.org/downloads

The Python language

An interactive session

To begin an interactive session, open Python 3. On a PC, you can use the Search box in the bottom
left corner of your screen, or the Start menu. Then select the version installed on your computer (e.g.
Python 3.9). Load Python’s integrated development environment, named IDLE.

You will see a screen similar to the one below:

In this window, which is called the Python Shell or Interactive window, you can type commands at
the >>> prompt.

You cannot save a program that you have
written in interactive mode. This has to
be done in script mode, used in the other
chapters of this book.

!

>>> print("Hello world")

The Python interpreter responds to your command and you will see Hello world appear on the
next line, followed by a new line with the prompt >>>.

Hello world
>>>

Example 1

Tip

1

Use the Python Shell (Interactive mode) for Challenges 1–5.

You can use single or double quotes in the print statement. If you need speech marks or an
apostrophe inside the text to be printed, use single quotes around the whole text to be printed,
and double quotes inside it, or vice versa:

Output statement (print)

Write a Python statement to display the line:

Gorillas are the largest living primates.

Challenge 1

>>> print('The guide told us "Stay very still! " ')
The guide told us "Stay very still! "

Example 2

>>> print("A gorilla's diet is mainly vegetarian.\
They feed mainly on stems, bamboo shoots and fruits.")
>>>

When you press Enter, the computer will print as much as it can on the first line, depending on
the size of your window, and continue on the next line:

�>>> print("A gorilla's diet is mainly vegetarian.\
They feed mainly on stems, bamboo shoots and fruits.")
�A gorilla's diet is mainly vegetarian.They feed mainly on st
ems, bamboo shoots and fruits.
>>>

Example 3

If you have a long
line of code, you can
split it over two lines
by typing a backslash
(\) , and continuing
the statement on the
next line.

Tip!

Write a Python print statement split over two lines to
print on one line. Use the tip above to help you:

The scientific name for the Western Lowland
gorilla is "Gorilla gorilla gorilla"

Challenge 2

2 Python Challenge

An assignment statement always contains an = sign, but it is not an equation. It means

“Take whatever is on the right-hand side of the = sign and put it into the variable named on the left-
hand side of the = sign.”

Simple assignment statements look like this:

age = 17
distanceTravelled = 35.6
street = "Granville Street"
over18 = False
winner = True
count = count + 1	

The last statement adds 1 to whatever was in the variable count and puts the result back in count.

Enter the following statements in the Python Shell (Interactive window).

cabFare = 4.50
flight = 91.25
train = 11.80
total = cabFare + flight + train
print("Total travel expenses =",total)

This should print:

Total travel expenses = 107.55

Challenge

Assignment statements

22

14 Python Made Easy

#Program name: Ch 2 Example 3 Add and multiply two integers
x = int(input("Enter the first integer: "))
y = int(input("Enter the second integer: "))
sumXY = x + y
product = x * y
print("Sum =", sumXY)
print("Product =", product)

Below is a Python program to allow the user to enter costs of travel, using the same values as in
Challenge 23. The statements appear as follows:

#Program name: Ch 2 Example 4 Cost of travel
cabFare = input("Enter cost of the cab fare: ")
flight = input("Enter cost of your flight: ")
train = input("Enter cost of any train fare: ")
total = cabFare + flight + train
print("Total travel expenses: ",total)

Run and test the program using 4.50, 91.25 and 11.80 as input values. The output appears as:

Total travel expenses: 4.5091.2511.80

What has happened? All the data has been entered as strings and concatenated (joined together) in
the print statement. All the costs need to be converted to floating point values.

In Python, all data items input by the user are treated as string variables. Numbers input by the
user have to be converted to either integers or floating point numbers before they can be used in
calculations.

Converting from strings to numbers

Function Description Example Returns

float(x) Converts a string to a floating point value float("4.65") 4.65

int(x) Converts a string to an integer int("3") 3

str(x) Converts a number x to a string value str(5.0) '5.0'

To convert a string to an integer, use the int() function.

To convert a string to a floating point number, use the float() function.

Example 3

Example 4

Inputting numerical data

Chapter 2 Data types and operators 15

Make up three more tests to test different
aspects of the program. Your tests should
include valid and invalid data, boundary
data and normal data.

Challenge 51

Use the following test data to test your program. (Challenge 49.)

Challenge 50

Test Model dB level Expected result Actual result

1 A 93 "Failed minimum limit"

2 B 110
"Failed. Requires adjustment or
reclassification as Model A"

3 C 110
"Failed. Requires adjustment or
reclassification"

4 C 126 "Passed"

5

6

7

26 Python Made Easy

Write a program to enter the names and times
in seconds of runners participating in 100m race
heats. The program should prompt for a name,
then prompt for their time, e.g.

Enter time in seconds for King, R:

The end of data is signalled by entering xxx for
the runner’s name.

Print the average time, in seconds, of all
the runners.

Challenge 65
Load Ch 4 Challenge 66 Tiles required
to cover given area incomplete from the
Starred challenges (incomplete) folder.

The program asks the user to enter the size
in m² of an area that needs tiling. The user
then selects the size of tiles they want from
a range of sizes given in cm. The program
tells them how many tiles they will need.
(Ten percent is added to the calculated
number to allow for tiles that need to be
cut, and this number is rounded down to
the nearest whole number.)

Copy and complete the program and save
it in your own folder.

Test your completed program by entering
20 cm for tile length, 12 cm for tile width
and 2.4 m² for area to be covered. The
integer number of tiles required, including
the 10% extra), is 110.

Challenge 66

Load Ch 4 Challenge 67 Double a number
repeatedly incomplete from the Starred
challenges (incomplete) folder.

The program asks the user to enter a number
between 1 and 10. If the number is not in this
range, keep printing a warning message and
asking the user to re-enter the number. Then
keep doubling this number until the result is
100,000 or more. Print the final result and the
number of times the number was doubled.

Challenge 67

Amend the program Ch 4 Challenge 68
Double a number repeatedly completed

so that the user can enter the final
target. Include validation to ensure
the target entered by the user is
between 20 and 100,000. Also
include a print statement so that

the number, and number of times
doubled, is printed each time it
is doubled.

Challenge 68

32 Python Made Easy

5CHAPTER 5
ARRAYS AND LISTS

An array is a data structure that stores values of the
same data type, such as integers, floating point numbers,
characters or strings.

An array is a common data structure in languages such as Visual Basic
and Java, but a list is a much more common data structure in Python. In
Python, a list is used instead of an array.

A Python list can store values of different data types, for example:

list1 = ["Alan", "Johnson", 27, "M", "Blonde"]

You can print the contents of a list with a single print statement.

Try this in the Python Shell:

>>> list1 = ["Alan", "Johnson", 27, "M", "Blonde"]
>>> print(list1)
['Alan', 'Johnson', 27, 'M', 'Blonde']

You can initialise a list like this:

planet = ["Jupiter", "Saturn", "Uranus", "Neptune", "Earth", "Venus"]

Items in a list may be referred to using an index. The first item has an index of 0.

print(planet[0]) #will print Jupiter

Working with lists

Example 1

Print all the items in the planet list, with each item on a separate line.

#Program name: Ch 5 Ex 1 List of planets

planet = ["Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn"]
n = len(planet) #sets n equal to number of items in the list
for index in range(n):
 print(planet[index])

Write a single statement to print the list of planets.

Challenge 71

35

List methods and functions

Method / Function Description Example

list.append(item)
Adds a new item to the end of
the list

planet.append("Uranus")

del <list>[<index>]
Removes the item at index from
the list

del planet[3]

list.insert(index,item)
Inserts an item just before an
existing one at index

planet.insert(3,"Pluto")

<item> = list()

<item> = []
Two methods of creating an
empty list structure

planet = list()

planet = []

Write a program to initialise the list of planets:

�planet = ["Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn"]

Use the list.append() method to append Uranus and Neptune to the end of list.

Print the list in the format:

['Mercury', 'Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn', 'Uranus', 'Neptune']

Challenge

Write a program to initialise the list:

["Mercury", "Venus", "Mars", "Jupiter", "Saturn"]

Use a list method to insert "Earth" between "Venus" and "Mars".

Print the amended list.

Challenge

Write a program to initialise and print the list of planets:

planet = ["Mercury", "Venus", "Earth", "Mars",
"Jupiter", "Saturn"]

Then print the list with each planet on a separate line starting
with Saturn, and ending with Mercury.

Challenge

72

73

74

(See Page 45 for comparison of methods and functions.)

36 Python Made Easy

Example 7

The program below generates 20 random floating point numbers between 0 and 1. Using these
numbers, random numbers between 0 and 200, and between 50 and 250 are generated. The three
sets of numbers are printed in neat columns.

#Program name: Ch 6 Example 7 Formatting printed columns
import random

for index in range (20):

	 num1 = random.random()	 #returns a random number between 0 and 1
	 num2 = num1 * 200		 #returns a random number between 0 and 200
	 num3 = num1 * 200 + 50	 #returns a random number between 50 and 250

	 #print num1 to 4 decimal places,

	 #num2 to 2 decimal places, num3 to 1 decimal place

	 #each number occupies 20 spaces and is right aligned

	 print("{:>20.4f}{:>20.2f}{:>20.1f}".format(num1,num2,num3))

Write a program that allows a user to enter two numbers area1 and area2, e.g. 2.347 and 1,
representing average daily rainfall in two different areas. Print a heading, and print the numbers with
two decimal places on one line, each in a 10-character space.

Enter average daily rainfall for area 1: 2.347
Enter average daily rainfall for area 2: 1
 Area1 Area2
 2.35 1.00

Challenge

Load the program Ch 6 Challenge 103
Strawberries incomplete from the Starred
challenges (incomplete) folder. Save it in your
own folder, and complete the missing lines.

Challenge

102

103

52 Python Challenge

Copy the program given in Example 1. Then change the pen colour to green, pen width to 10 and
move to a new start point with coordinates (–100, 200). Draw a hexagon with sides of length 75.

Challenge

Write a program which sets the pen width to 3 and pen colour to red. Hide the turtle and draw a
pentagon with sides of length 100 pixels, starting in the middle of the screen.

Challenge

Complete the program Ch 8 Challenge 123 Draw red shape incomplete which sets the pen
colour to red, the width to 10, the turtle to a turtle shape and the drawing speed to “slow”. Draw the
following shape on the screen, starting at coordinates (0,0) in the middle of the screen.

(Each square in the grid is 100 × 100 pixels).

Challenge

Write a program which sets the pen colour to blue, the width to 5. Draw the following shape on the
screen, starting at coordinates (–100, –100). (Each square in the drawing is 100 × 100 pixels).

Challenge

START
(0,0)

FINISH
(0,–100)

FINISH

START
(–100,–100)

121

122

123

124

Chapter 8 Turtle graphics 63

Example 2

#Program name: Ch 9 Example 2 Bubble sort (fish)

fish = ["parrotfish", "grouper", "boxfish", "damselfish",\

 "snapper", "ray"]

#get number of items in the list

numItems = len(fish)
passNumber = numItems - 1
swapMade = True
while passNumber > 0 and swapMade:
 swapMade = False
 for j in range(passNumber):
 if fish[j] > fish[j + 1]:
 temp = fish[j]
 fish[j] = fish[j + 1]
 fish[j + 1] = temp
 swapMade = True
 passNumber = passNumber - 1
print("\nSorted list:\n",fish)

How many passes will be required to
sort the following list?

parrotfish, grouper, boxfish,
damselfish, snapper, ray

Challenge

Load program Ch 9 Challenge 134 Bubble
sort incomplete from the Starred challenges
(incomplete) folder. Amend it so that it prints
the state of the list and the value of the Boolean
variable swapMade after each pass.

Explain why in this algorithm, the last pass does
not always change the list.

Challenge133 134

68 Python Made Easy

10CHAPTER 10
READING AND WRITING
TEXT FILES

Reading a text file using for <line> in <fileid>

Example 1

A text file has been created to hold the names, genders and ages of seven students going on a
outdoor survival weekend.

The program below opens the text file, reads all the records, prints them and closes the file.

#Program name: Ch 10 Example 1 print text file

#reads records from a file named students1.txt and prints each record

studentFile = open("students1.txt","r")

for studentRec in studentFile:

 print(studentRec)

studentFile.close()

When this program is executed, the output is double-spaced:

Diaz,Rosa,F,15

Hamilton,Jerome,M,16

Head,Jennifer,F,16

(etc.)

The programs that you have written so far sometimes use data
entered by the user. When the program ends, the data is lost.

Data often needs to be stored on a permanent storage device
such as hard disk or SSD, so that it can be read and processed as
often as required.

Most real-life applications will store data in a database, from which information can be easily retrieved
using queries written in a language called SQL (Structured Query Language).

In this chapter you will practise reading from and writing to text files. A text file can be created in
Python, or even in Notepad. Each line in the file is a separate record, usually consisting of several
fields of different data types. There are several different ways, in Python, to read records sequentially
from a text file.

77

ANSWERS

Challenge 2:	 print(The scientific name for the Western Lowland \
		 gorilla is "Gorilla gorilla gorilla")

Challenge 3: 	 print("Don’t worry.\nBe happy")

Challenge 5:	� Missing quote at end of line. The ‘EOL while scanning string literal message’ means the debugger reached the
End Of Line while scanning the text string and couldn’t find an end quote.

		 firstName = input("What is your name?)

Challenge 7: 	 animal1, animal2 or animal3 (or alternative variable names that you used)

Challenge 9: 	 All valid except (c) 1stClass and (f) A–1

Challenge 10: 	 10 5

Challenge 11:	 Fred Tom Fred

Challenge 13: 	 (a) �Max lives could be a constant in a computer game. (b) Lives remaining will vary during a computer game.

		 (c) Population can vary over time. (d) The unit of gravity on earth is a constant.

Challenge 14:	 >>> firstname = input("Enter firstname: ")
		 Enter firstname: Jo
		 >>> surname = input("Enter surname: ")
		 Enter surname: Brown
		 >>> print(surname,firstname)
		 Brown Jo
		 >>>

Challenge 16: 	 (a) Missing quote at the end of a string. (EOL stands for End Of Line.)

		 (b) Incorrectly spelt or undefined variable name.

Note: All programmed solutions are in subfolders of the Python programs folder.

Chapter 1

Challenge 18:	� print("13685 divided by 27 =",13687//27, " remainder ", 	
13687%27)

		 Result: 13685 divided by 27 = 506 remainder 23

Challenge 19:	 mondayMiles = 20.0
		 tuesdayMiles = 23.75

		 print("Total miles travelled on Monday and Tuesday =",\
		 mondayMiles + tuesdayMiles)

Challenge 20:	 print((7*3) + (16/5))

Challenge 21:	 print("2 to the power 10 =",2**10)

Challenge 24:	 (a) integer (b) string (c) float

Challenge 27:	 Fahrenheit and Celsius temperatures are the same at –40

Challenge 28:	 >>> num1 = 24
		 >>> num2 = 3
		 >>> �print("The sum of " + str(num1) + " and " + str(num2) + " is " + str(num1 +

num2))
		 The sum of 24 and 3 is 27

Chapter 2

86 Python Challenge

Challenge 30:	 x = input("Enter value for x : ")
		 y = input("Enter value for y : ")
		 temp = x
		 x = y
		 y = temp
		 print("Swapped values: x =",x, " y =", y)

Challenge 33:	 20

Challenge 34:	 >>> 10 * 7 == 70
		 True

Challenge 35:	 >>> "John" != "JOHN"
		 True

Challenge 36:	 >>> (6 <= 2*4) and (28 <= 7*4)
		 True

Challenge 37:	 >>> (x < 0) and (y < 0)

Challenge 38:	 >>> (x == 0) or (b == 0)

Challenge 39:	 >>> a = 24/8
		 >>> b = 24 + 8
		 >>> print(a==b)
		 False

Challenge 40:	 >>> print(237//17 == 237/17)
		 False

Challenge 41:	 >>> print(10 == 5*2 and 45 != 9*5)
		 False

Challenge 42:	 >>> print(6*3 >= 9*2 or 30//7 == 2)
		 True

Challenge 51:	 For example, use test data such as:

		 A, x (Invalid data, expected result – runtime error)

		 B, 109 (Boundary data, expected result “Failed. Requires adjustment.” message)

		� D, 120 (invalid model data, valid decibel data. Expected result error message “Model must be A, B or C. No result
given.”)

Chapter 3

Challenge 56:	 These are some sample tests that you could use:

Challenge 64:	 Enter –1 when no more data
		 Enter number of lengths on day 1: (etc)

Chapter 4

Test a b Expected result Actual result

1 3 26 13, 26

2 3 27 13, 26

3 13 39 13, 39

4 12 45 13, 39

5 –30 0 –29, –13, 0

6 –40 –13 –39, –26, –13

7 27 13 nothing printed

Answers 87

Challenge 71:	 print(planet)

Challenge 76: 	 totals = [0] * 100

Challenge 82: 	 booking[1][2] = 96

Chapter 5

Challenge 87:	 20

Challenge 88:	 7 The “escape sequence” \n is counted as one character..

Challenge 89:	 name = input("Enter full name")
		 print(len(name))
		 print(name[0])
		 print(name[len(name) - 1])

Challenge 96:	 response.upper() == "Y"

Challenge 98:	� It converts the characters entered by the user to uppercase. This means that the user can enter “aa”, “AA”, ”Aa”,
“ba”, etc. for the flight number to be accepted.

Challenge 100:	 myStringUppercase = mystring.upper() is incorrect. It should be:

		 myStringUppercase = myString.upper() (Note the ‘S’ in myString.)

Challenge 101: 	 Test data1: powerGenerated = abc (non-numeric value)

		 Test data 2: powerGenerated = 75, daysLowWind = 7 (division by zero)

Chapter 6

Challenge 104: 	price2 = round(price1,2) assigns 5.33 to price2

Challenge 105: 	print(ord("A"))
		 print(chr(68)) prints D

Challenge 106:	 for n in range(0,100,3):
				 print(n)

Challenge 107: 	import math
		 area = 2 * math.pi*5.8
		 print(round(area,2))
		 (prints 36.44)

Challenge 108:	 import math
		 print(math.floor(38.0))
		 print(math.floor(53.9))

Challenge 116: 	 Python will report a runtime error when it reaches the line

		 secs = int(time[4:6])

Challenge 117:	 (a) Global variables: title (defined as global in the function) heading (declared in the main program)

		 (b) Local variables face, n, dieroll, dieface
		 (c) A runtime error will occur as the local variable face is only recognised within the function.

Challenge 118: 	 seconds = random.random()* 20

Chapter 7

Challenge 129:	 drawPolygon(100,3)

Chapter 8

88 Python Challenge

Challenge 133: 	Two passes, and an extra pass to verify that no swaps were made in the previous pass

Challenge 134: 	�The Boolean variable swapMade is set to False if no swaps are made during a pass. The while loop then
terminates.

Challenge 135:	 5 passes though the list of 6 items

Challenge 136:	 myList = [3,7,1,9,4,6]
		 myListLength = len(myList)
		 temp = myList[2]

Challenge 138:	 print(searchItem, "was item", index + 1, "in the list")

Challenge 139: 	(a) 500 (b) 1000

Challenge 140: 	Ken Oliver Peter

Challenge 141: 	 (a) midpoint = 5 (b) alist[midpoint] = ”Jas”

Challenge 142:	 print statement executed four times within loop.

		 Final print statement:

		 Item is not in the list

Challenge 145:	 Ch 9 Challenge 145 binary search with errors (in Starred Challenges (incomplete) folder).

		 Syntax errors:
		 print("loop executed)	 missing quote mark

			 else	 missing colon

		 Logic errors:
		 midpoint = (firstIndex + lastIndex) / 2 	should be int((first + last) / 2)

		 lastIndex = len(aList)		 should be last = len(aList – 1)

		 Runtime errors:
		� print("List of names to be searched:",aList[12])

list index out of range

		� print("Found at position" + index + "in….
should be str(index) or use comma instead of +

Challenge 146:	 The last test results in a runtime error

		 if aList[midpoint] == searchItem:
		 IndexError: list index out of range
		 This is because lastindex should be initialised as last = len(aList) - 1

Challenge 147: 	 Actual outcome should be as expected for all tests.

		� You could add tests to test the lower boundary data (1), test outside the top boundary (101), and test an invalid
input (not <, =, or >).

Chapter 9

Challenge 150:	 Output will be:
		 Rosa Diaz is 15
		 years old
		 Jerome Hamilton is 16
		 years old
		 etc.

Chapter 10

Answers 89

PYTHON SYNTAX GUIDE

Input statement

name = input("Enter name: ")
visitors = int(input("How many visitors? "))
cost = float(input("Enter cost per person: "))
totalCost = visitors * cost

Output statement

print("Total cost:",totalCost)

or use concatenation to join two strings:

print("TotalCost " + str(totalCost))

"end" parameter prevents automatic newline

print("Total cost ",end="")
print(totalCost)

newline character "\n" causes a skip to a new line

Arithmetic operators

Logical and Boolean operators

Examples (a = 3, b = 5)

less than < a < b True
greater than > a > b False
less than or equal <= a <= b True
greater than or equal >= a >= b False

equal == a == b False
not equal != a != b True
logical and and a == b and b == 5 False
logical or or a == b or b == 5 True
logical not not not(a == b) True

Selection

if statement
if (age < 18):
	 print("Under age")

if...else statement
if (score >= 50):
	 print("Pass")
else:
	 print("Fail")

if...elif...else statement
if (score >= 80):
	 print("Well done")
	 print("Distinction")
elif (score >= 70):
	 print("Merit")
elif (score >= 50):
	 print("Pass")
else:
	 print("Fail")

Definite iteration

print numbers 0 to 5:

for n in range(6):
	 print(n)

print numbers 5 to 8:

for n in range(5,9):
	 print(n)

print every third number between 1 and 10:

for n in range(1,11,3):

	 print(n)

print every third number counting down from

99 to 90, counting down

for n in range(99,89,-3):
	 print(n)

Indefinite iteration

daysRemaining = 6
while daysRemaining > 0:
	 daysRemaining = daysRemaining - 1
	 print("Days to Christmas",\ 	
		 daysRemaining)
print("Happy Christmas!")

Result

addition a = 15 + 2 a = 17
subtraction b = 15 - 2 b = 13
multiplication c = 15 * 2 c = 30

division d = 15 / 2 d = 7.5
exponentiation e = 5 ** 2 e = 25
integer division (div) f = 15 // 2 f = 7
remainder (mod) g = 15 % 2 g = 1

Help! Download syntaxsummary.py from the Python programs folder available from
www.ClearRevise.com for a Python version of this quick reference guide.

90 Python Challenge	 PGOnline.co.uk

Subroutines

Random module

Function (returns a value)

def myFunction(a,b):
	 x = a + b
	 return(x)

To call the function:

	 sum = myFunction(3,4)

Procedure (does not return a value)

	 def myproc():

or pass parameters to the procedure:

	 def greet(greeting,name):
	 print(greeting, name)

To call the procedure:

	 greet("Hello","Jane")

import random imports the module

random.randint(a,b) returns a random

integer X so that a <= X <= b

random.random() returns value from 0.0-1.0

Turtle methods

Import the turtle module before using any turtle statement:

import turtle

turtle.setpos(-300,0) positions the turtle at (-300,0)
turtle.home() positions turtle at (0,0)

turtle.forward(100)
turtle.right(90) turns through 90 degrees clockwise
turtle.left(30) turns through 30 degrees anti-clockwise

turtle.penup() lifts the pen
turtle.pendown() puts the pen down
turtle.pensize(10) sets the pensize
turtle.pencolor("red") sets the pen colour

Strings

myString = "This is a string"

len(mystring) evaluates to 16 (characters in the string)

Iterating through a string

for nchar in myString:
 print(nchar)

Two useful string methods

myStringUCase = myString.upper()
myStringLCase = myString.lower()

Slicing strings

e.g. to isolate characters 5 to 8 of myString:

chars5to8 = myString[5:8]

Text files

Opening a text file

A text file can be opened for reading, writing
or appending data

gameFile = open("gamescore.
txt","r") opens the file for reading

Set the final parameter to "w" to write a new
file or overwrite an existing one

Set the final parameter to "a" to append data
or create a new file if no file can be found

Closing a text file

	 gameFile.close()

Reading a text file

	 gameFile.read() reads the entire file
	� gameRec = gameFile.readline()

reads one line of a text file. This returns
an empty string "" on reaching the end
of file

Writing or appending a line to a text file
	� gameFile.write(field1 + field2 +

...
+ "\n")

Lists

myList = ["Bob","Mandy","Fred","Jo","Keira"]

print(myList[0]) prints Bob

print(myList) prints the whole list

print(len(myList)) �prints 5 (the number of items in
the list)

aList = [] * 100 �initialises an empty list of 100 items

Two-dimensional lists

A quiz has 4 rounds and 3 teams

Results are entered in a 2-D list.

Row indices go from 0 to 2 (teams)
Column indices go from 0 to 3 (rounds)

quizResults = [[5, 7, 9, 4], (row 0)
 [12,14,10,18], (row 1)
 [27,21,23,20]] (row 2)

print(quizResults[1][3]) �prints 18, the result in second
row and fourth column

91ClearRevise.com

INDEX

0-9
2D lists 39

A
arithmetic operators 11
array 35
assignment statement 14

B
backslash (\) 2
binary search 71
Boolean
	 data type 11, 19
	 expression 19
	 operator 19
bubble sort 67

C
camel caps 7
cancel a running program 25, 33
casting 16, 31
chr() function 53
colours, syntax 5
comments 5, 6
comparison operators 19
concatenation 10, 17, 31, 90
constants 8
convert between data types 15

D
data types 11
div operator (div) 11

E
Editor window 4
elif 23, 90
errors 74
	 logic 74
	 runtime 50, 74
	 syntax 74

F
field 79
file (see text file)
for loop 27
format() method 51, 85
formatting output 51, 85
functions 36, 53, 56

G
global variables 59

I
identifier 7
IDLE 1, 4, 5
if .. else 22
indentation 22
indexing strings 43
initialise 36
input statement 9
integer division (div) 11
Interactive mode 1, 4
iteration 27
	 definite 27
	 indefintite 30

K
keywords 5

L
library modules 54
list 35
	 methods and functions 36
local variables 59
logical operators 19

M
math module 54
methods 36
mod operator (mod) 11

N
nested for loop 29
nested if statements 24
newline
	 character 3, 43, 78
	 prevent 28

O
ord() function 53
output statement (print) 2

P
PI 13
prevent automatic newline 28, 90
print statement 2, 13
procedures 53
programming constructs 19
Python Shell 1

R
random module 60
range() function 27, 53
readline() 80
readlines() 81

relational operators 19
remainder (mod) 11
repetition 27
reserved words 5
round() function 31, 53
runtime error 50, 74

S
script mode 1
searching algorithms 70
selection 22
sequence 19
Shell (Interactive window) 1
slicing 46
sorting algorithms 67
split(<char>) method 79
splitting output over two lines 3
starting a new program 4
stop a running program 25, 33
string
	 indexing 43
	 iterating through 43
	 methods 44
	 slicing 46
	 str() function 15
	 variable 9
strip(<char>) method 79
syntax errors 6, 74
syntax highlighting 5

T
terminate a program (Ctrl-C) 25
testing 25, 75
test plan 76
text file 77
	 append 83
 	 close 78
 	 open mode 83
 	 read 77, 78, 80, 81
 	 write 83
time module 55
turtle module 61
two-dimensional lists 39

V
validation 48
variable 7
	 local and global 59
	 names 6, 7

W
while loop 30

92 Python Challenge

