
Learn
in

g
 to

 P
ro

g
ram

 in
 P

yth
o

n
P

M
 H

e
ath

c
o

te

ISBN: 978-1-910523-11-7

This book is intended for individuals and students
learning to program. You may already have done
some programming in other languages, but not be
familiar with Python. Novice programmers should
work through the book sequentially, starting at
Chapter 1. It will also be a useful reference book
for students on a programming course or anyone
working on a programming project.

It teaches basic syntax and programming
techniques, and introduces three built-in
Python modules:

•	 Tkinter, used for building a graphical user
interface, which is an option that some users
may like to include in their project work.

•	 SQLite, which enables the creation and
processing of a database from within a Python
program. This provides an alternative to writing
to a text file when data needs to be stored
and retrieved.

•	 pdb, Python’s debugging module, which can be
used to help find elusive logic errors.

Questions and exercises are included in every
chapter. Answers to these, as well as over 120
Python programs for all the examples and exercises
given in the book, may be downloaded from
www.pgonline.co.uk. These programs enable
users of the book to try out the in-text examples
and check possible solutions to the exercises.

PM Heathcote

>>

>>

Python
Learning to Program in

Python
Learning to Program in

Cover picture:
‘Fosse No.4’
Oil on linen,
30x30cm © Barbara Burns 2015
www.slaneart.com

Python
Learning to Program in

Published by
PG Online Limited
The Old Coach House
35 Main Road
Tolpuddle
Dorset
DT2 7EW
United Kingdom
sales@pgonline.co.uk
www.pgonline.co.uk

2017

P.M. Heathcote

>>

ii

Graphics: Paul Raudner / PG Online Ltd

Design and artwork: PG Online Ltd

First edition 2017, reprinted June 2018

A catalogue entry for this book is available from the British Library

ISBN: 978-1-910523-11-7

Copyright © PM Heathcote, 2017

All rights reserved

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means
without the prior written permission of the copyright owner.

Printed and bound in Great Britain

iii

Preface
Programming is fun! Trial and error is to be encouraged and you should type all of the
examples and try all the exercises to get used to entering and debugging programs
and to see how the programs run.

Python is one of the most popular programming languages both in schools and in
industry. Python is used by Google, NASA, Instagram, Facebook and thousands of
other companies to develop their applications. It is easy to learn and is a suitable
language for tackling projects from school onwards.

This book is intended for individuals and students who may have done some
programming in other languages, but are not familiar with Python. It is intended that
users of the book should work through the book sequentially, starting at Chapter 1.
However, it will be a useful reference book for students on a programming course or
anyone working on a programming project.

It teaches basic syntax and programming techniques, and introduces three built-in
Python modules:

•	 Tkinter, used for building a graphical user interface, which is an option that some
users may like to include in their project work.

•	 SQLite, which enables the creation and processing of a database from within a
Python program. This provides an alternative to writing to a text file when data
needs to be stored and retrieved.

•	 pdb, Python's debugging module, which can be used to help find elusive
logic errors.

Questions and exercises are included throughout every chapter. Over 120 Python
programs for all the examples and exercises given in the book may be downloaded
from www.pgonline.co.uk. We strongly advise you to write your own code, and
check your solutions against the sample programs provided.

Enjoy – the sky's the limit!

Downloading Python 3
Python is available to be downloaded free from https://www.python.org/downloads/.
The version used in this book is version 3.6. All the programs have been written and
tested in IDLE, Python’s own integrated development environment. Many schools and
individuals may prefer to use alternative development environments and the book is
equally applicable to these.

v

Contents
Chapter 1 – Data types, operators and I-O� 1

Programming in Python� 1

Programming in interactive mode� 1

Data types� 2

Rounding a result� 3

Naming objects� 4

Augmented assignment operators� 6

The print statement� 6

The input statement� 9

Chapter 2 – Strings and numbers� 11
Script mode� 11

Adding comments� 12

Keeping the console window open� 12

String methods� 12

Syntax errors� 13

Inputting numbers� 14

Converting between strings and numbers� 15

Functions and methods� 16

Chapter 3 – Selection� 17
Programming constructs� 17

Boolean conditions� 18

The elif clause� 18

Nested selection statements� 19

Complex Boolean expressions� 19

Importing library modules� 20

vi

Chapter 4 – Iteration� 22
The for loop� 22

The while loop� 24

String processing� 25

Slicing strings� 27

Interrupting execution� 28

Chapter 5 – Lists and tuples� 29
Python lists� 29

Operations on lists� 30

Appending to a list� 31

List processing� 32

Two-dimensional lists� 33

Tuples� 35

Chapter 6 – Validating user input� 37
Validating user input� 37

The ASCII code� 38

Functions ord() and chr()� 40

Regular expressions� 41

Chapter 7 – Searching and sorting� 44
Dictionary data structure� 44

Storing a list in a dictionary� 47

Sorting a list� 47

Sorting a two-dimensional list� 47

Chapter 8 – Functions� 50
Types of subroutine� 50

Built-in functions� 50

Writing your own functions� 51

vii

Using parameters and return values� 52

A note about procedures and functions� 55

Local and global variables� 56

Chapter 9 – Reading and writing files� 59
Storing data� 59

Records and fields� 59

Opening, reading and closing a text file� 60

Writing to a file� 64

File processing� 65

Formatting output� 68

Chapter 10 – Databases and SQL� 71
Flat file databases� 71

Records, fields and primary keys� 72

Querying a database� 73

Adding a record to a database table� 73

Updating a record� 74

Deleting records from a table� 74

Chapter 11 – Python’s SQLite module� 76
Using SQL commands in a Python program� 76

Creating a database� 76

Importing data from a text file� 78

Creating a new database and loading it with data� 80

Querying the database� 81

Adding records entered by the user� 83

Trapping errors� 84

Deleting a record� 84

Updating the database� 85

viii

Chapter 12 – Introduction to Tkinter� 88
The Python Tkinter module� 88

The “Hello World” program� 89

Widgets� 90

Placing widgets in a window� 91

Responding to user input� 92

Setting window parameters� 93

Chapter 13 – Developing an application using Tkinter� 95
Sample Application 1� 95

Designing the data input window� 95

Building the form� 96

Sample Application 2� 102

Sample Application 3� 106

Chapter 14 – Program design� 110
Planning a program� 110

The sample task� 110

Chapter 15 – Testing and debugging� 113
Drawing up a test plan� 113

Python module pdb� 115

Index� 119

1

1

Chapter 1
Data types, operators and I-O

Objectives
•	 Run commands in interactive mode

•	 Use string, numeric and Boolean data types and operators

•	 Learn the rules and guidelines for naming variables

•	 Use input and output statements

Programming in Python
Python is a popular, easy-to-learn programming language. A Python program is simply
a series of instructions written according to the rules or syntax of the language, usually
designed to perform some task or come up with a solution to a problem. You write the
instructions, and then the computer translates these instructions into binary machine
code which the computer can execute. It will do this using a translator program,
which could be either a compiler or an interpreter. Python uses elements of both an
interpreter and a compiler.

Python comes with an integrated development environment called IDLE which
enables you to enter your program, save it, edit it, translate it to machine code and run
it once it is free of syntax errors. If you have written a statement wrongly, that will be
reported by the interpreter as a syntax error, and you can correct it and try again.

Programming in interactive mode
Python has two modes of entering and running programs. In interactive mode, you
can type instructions and Python will respond immediately. This is very useful for trying
out statements that you are not sure about, and is a good place to start. However, you
cannot save a program that you have written in interactive mode. This has to be done
in script mode, described in the next chapter.

2

11

Chapter 2
Strings and numbers

Objectives
•	 write and execute programs in script mode

•	 learn some useful string methods and functions

•	 convert string input to numerical values and vice versa

•	 identify and correct syntax errors

Script mode
In the last chapter we used interactive mode, which allows you to test out
different Python statements and gives instant feedback. However, if you want to
save a program so that you can load and run it later, you need to use script mode.
Alternatively, you can use one of the many interactive development environments
(IDEs) that are available to create, edit, save and run Python programs. In this book the
screenshots show programs entered and executed in Python IDLE.

You can open an Editor window in Python’s IDLE (integrated development
environment) from the interactive Shell window. Select File, New File from the menu
bar, and a new window will open. In this window, type a one-line program:

•	 Before you can run the program, you must save it, so select File, Save from the
menu bar and save it with the name hello world.py in a suitable folder

•	 Then select Run, Run Module from the menu or use the shortcut key F5

•	 The interactive window will appear with the result:

Hello World

12

LE
A

R
N

IN
G

 T
O

 P
R

O
G

R
A

M
 I

N
 P

Y
T

H
O

N

2

You can leave the interactive window open while you are writing programs in script
mode. That way, if you are not sure about a statement, you can try it before writing it in
your program.

Adding comments
It’s a good idea to include comments at the top of every program (beyond the very
trivial) that you write, giving the name and purpose of the program, your name and the
date you wrote the program. You may also want to document in which folder you have
saved it so you can quickly find it again after a few weeks or months.

Within the program, add comments to explain the purpose of any tricky bit of code
and how it works.

To write a comment, type the # symbol. Anything to the right of # will be ignored.

Keeping the console window open
If you run the Python program by double-clicking its name in your folder, rather
than launching it from IDLE, the program will run and then the console window will
immediately close so that you can’t see what happened. To keep it open, add a line to
the end of your program:

input("\nPress Enter to exit: ")

The window will remain open until the user presses the Enter key.

String methods
Every data type in Python is an object. Strings, integers and floating point numbers
are all objects, and they have built-in methods which perform useful tasks. Some
useful string methods are shown in Table 2.1.

Method Example Description

upper astring.upper() returns astring all in uppercase

lower astring.lower() returns astring all in lowercase

index astring.index(item) returns the index of the first occurrence of
item in astring, or an error if not found

find astring.find(item) returns the index of the first occurrence of
item in astring, or -1 if not found

replace astring.replace(old,new) replaces all occurrences of old substring
with new in astring

Table 2.1: String methods

14

LE
A

R
N

IN
G

 T
O

 P
R

O
G

R
A

M
 I

N
 P

Y
T

H
O

N

2

Q1 There are two more errors in the program. Can you spot them?

Inputting numbers
A simple program to find the cost of lunch is shown below.

Example 3
#Program name: Ch 2 Example 3 Cost of lunch.py
main = 3.00
juice = 0.75
banana = 1.00
total = main + juice + banana
print("Total for lunch: ",total)

This prints out

Total for lunch: 4.75

Example 4
To make the program more useful, we could ask the user to enter the cost of the main
course, juice and banana. Here is a first attempt:

#Program name: Ch 2 Example 4 Cost of lunch v2.py
main = input("Enter cost of main course: ")
juice = input("Enter cost of juice: ")
banana = input("Enter cost of banana: ")
total = main + juice + banana
print("Total for lunch: ",total)

There is a missing comma before the variable name astring. You can click OK,
correct the error, resave and try again.

24

LE
A

R
N

IN
G

 T
O

 P
R

O
G

R
A

M
 I

N
 P

Y
T

H
O

N

4

Q1
Write Python code to do the following:

(a) � Print the numbers 10 - 0 starting at 10. Then print “Lift-off!” Import the
time module at the start of the program with the statement import
time. Include a time delay of 1 second before printing each number, using
the statement time.sleep(1).

(b)� � Ask the user to enter 5 numbers. Keep a running total and print the total
and average of the numbers.

The while loop
The while loop is used when the number of times the loop will be performed is
initially unknown. The loop is performed as long as a specified Boolean condition is
True. If the condition is False before the while statement is encountered, the loop
will be skipped.

The Boolean condition is tested in the while statement at the start of the loop, and
again each time the loop is completed. If it becomes True halfway through the loop,
the remaining statements in the loop will be executed before the condition is re-tested.

Example 3
Write code to accept a series of integer test results from a user, find and print the
maximum and minimum results. Assume all the results are between 0 and 100. The
end of the input is signalled by an input of -1.

#Program name: Ch 4 Example 3 max and min.py
testResult = int(input("Please enter test result: "))
Set maximum and minimum to first test result
maxResult = testResult
minResult = testResult

while testResult != -1:
if testResult > maxResult:

maxResult = testResult
if testResult < minResult:

minResult = testResult
testResult = int(input("Please enter test result (-1 to
finish): "))

print("\nMaximum test result =", maxResult)
print("Minimum test result =", minResult)

68

LE
A

R
N

IN
G

 T
O

 P
R

O
G

R
A

M
 I

N
 P

Y
T

H
O

N

9

Formatting output
The data printed above would look much better printed neatly in columns, with column
headings at the top.

Format operators
To do this, Python provides format operators which are used to produce
formatted strings.

The % operator is a string operator called the format operator. Using the format
operator, instead of writing something like

print(city, temperatureC, localTime)

the statement is written as

print("%s,%d,%s" %(city, temperatureC, localTime))

We can try this out in IDLE to see what the output looks like:

>>> city = "London"
>>> temperatureC = 7
>>> localTime = "1200"
>>> print("%s,%d,%s" %(city, temperatureC, localTime))
London,7,1200
>>> print("The temperature in %s was %d degrees C at %s"

%(city,temperatureC,localTime))
The temperature in London was 7 degrees C at 1200

The formatting expression is divided into two parts.

The first part, "%s,%d,%s", contains one or more format specifications. A conversion
character tells the format operator what type of value is to be inserted into that position
in the string; %s indicates a string, %d indicates an integer.

The second part, %(city, temperatureC, localTime), specifies the values
that are to be printed.

Q3
Write statements to do the following:

	 set a = 3, b = 4, c = a + b, d = a * b.

Use format operators to print the statements:

3 + 4 = 7
The product of 3 and 4 is 12

10

71

Chapter 10
Databases and SQL

Objectives
•	 Learn how data is held in a database so that information can be easily added,

deleted, amended and retrieved

•	 Learn some database terms: table, record, field, primary key

•	 Write SQL statements to create a database table and add, update or delete data in
the table

•	 Write SQL statements to query a database

Flat file databases
A database is a collection of records held in a number of different tables. In this book
we will be concerned only with flat file databases, which contain just one table.

Within a database table, data is held in rows, with each row holding information about
one person or thing. The data about city temperatures that we held in a text file in the
last chapter could be held in a database table like this:

city temperature localTime

London 7 1200

Accra 30 1200

Baghdad 20 1500

Winnipeg -12 0600

New York 14 0700

Nairobi 27 1500

Sydney 22 2300

13

95

Chapter 13
Developing an application
using Tkinter

Objectives
•	 Design and implement a data entry form for a given application

•	 Implement actions to be performed when a button is clicked

•	 Use a message window to give information to the user

•	 Close the Tk window and continue or end the program

Sample Application 1
This chapter describes how you might set about developing a GUI application
using Tkinter. The sample application will display a data entry screen to enable a
teacher or administrator to enter a user ID, first name and surname for a student.

Designing the data input window
You should start by hand drawing a rough design for your form, perhaps something
like the image below.

98

LE
A

R
N

IN
G

 T
O

 P
R

O
G

R
A

M
 I

N
 P

Y
T

H
O

N

13

Creating the root window
The parameters of the root window will be set in the same way as in Example 3 of the
previous chapter.

#create a fixed size window
root = Tk()
root.geometry("270x240")
root.title("Student details")
root.resizable (False, False)
root.configure(background = "Light blue")

Creating the frames
It’s useful to draw a grid over the window design so we can easily see in which row
and column within a particular frame each widget is to be placed.

Column 0

Row 0 Frame 1

Frame 2

Root
window

Row 0

Row 1

Row 2

Row 2

Column 1

Student details form

Username

First name

Surname

Submit Clear

Within each frame, the first row is Row 0, the second row is Row 1 and so on. The two
buttons are in the main window, not in a frame, so they are in Row 2 with reference
to the window, since Frame 1 is in Row 0 of the window and Frame 2 is in Row 1 of
the window. Note that the rows do not have to be the same height – their height is
determined by their contents.

102

LE
A

R
N

IN
G

 T
O

 P
R

O
G

R
A

M
 I

N
 P

Y
T

H
O

N

13

Sample Application 2
In this application, the user will log on by typing a username and password. If the
password is incorrect, an error message will be displayed, the username field and the
password will be cleared and the user can press a Password hint button to help them
get their password correct. In this example, the password is “aaaaaa”. The user name
is not checked. The input screen looks like this:

Once the password has been entered correctly, another message window is displayed
inviting the user to continue. Once they press OK, the message box and the main
window close and control passes back to the program, where the user could enter
some data, play a game, take a test or perform any other task. In this example the
program simply prints “carry on now…” and ends.

The password typed by the user will be replaced by asterisks on the screen, as a
security measure. This is achieved by including the parameter show = "*" in the
Entry widget:

entry_password = Entry(frame_entry,width=15,bg="white",show = "*")

Using a message box
The messagebox widget is not one of Tkinter’s standard widgets, so you need
to include the statement from tkinter import messagebox at the top of
the program.

A message box is useful for alerting the user to an error or to give them information. In
this application we will use two message boxes. The first one pops up with a message
when they press a Password hint button if they have forgotten their password. It
is common practice in many login routines to include a button to click if you have
forgotten your password – normally the system will reset the password and email you a
new one.

13

D
E

V
E

LO
P

IN
G

 A
N

 A
P

P
LI

C
A

T
IO

N
 U

S
IN

G
 T

K
IN

T
E

R

103

The Python code to display the message box is

messagebox.showinfo(�title = "Password hint",
 message = "Hint: Try password aaaaaa")

This generates the pop-up window, and the user must click OK to continue.

Once the user presses the Submit button, the program checks the password and if
correct, displays a message “Password accepted” and a message box to allow the
user to continue.

Note: The password and hint in this example are clearly used for testing purposes only;
in a real situation, the password and the hint would be something that the user had
originally supplied, such as a hint “Grandmother’s birthday” to accompany a password
such as GMa221155, to remind them what password they had specified.

Closing the Tkinter GUI
The window named root is closed in the submit function with the statement

root.destroy()

Control then passes back to the statement following the root.mainloop()
statement and the program continues.

The complete listing is shown below.

#Program name: Ch 13 Sample app 2 validate password aaaaaa.py
#Program asks user to login, then checks password
#In this program, password is "aaaaaa"

from tkinter import *
from tkinter import messagebox

def submit():
password = entry_password.get()
username = entry_username.get()
messageAlert = Label(root,width = 30)
messageAlert.grid(row=3, column=0, columnspan=2, padx=5,
pady=5)

104

LE
A

R
N

IN
G

 T
O

 P
R

O
G

R
A

M
 I

N
 P

Y
T

H
O

N

13

if password != "aaaaaa":
messageAlert.config(text = "Password incorrect")
entry_username.delete(0,"END")
entry_password.delete(0,"END")
entry_username.focus_set()

else:
messageAlert.config(text = "Password accepted")
print("password accepted")
print("Username: ", username)
print("Password: ", password)
messagebox.showinfo(title = "Password OK",
message = "Press OK to continue")
root.destroy()

display a message box with a hint for password
def hint():

messagebox.showinfo(title = "Password hint",
 message = "Hint: Try password aaaaaa")

#create the main window
root = Tk()
root.geometry("250x180")
root.title("Login Screen")
root.resizable (False, False)
root.configure(background = "Light blue")

#place a frame round labels and user entries
frame_entry = Frame(root)
#frame_entry.pack(padx = 10, pady = 10)
frame_entry.grid(row=0, column=0, columnspan = 2,
 padx = 10, pady = 10)

#place a frame around the buttons
frame_buttons = Frame(root)
frame_buttons.grid(row = 2, column = 0, columnspan = 3,
 padx = 10, pady = 10)

#place the labels and text entry fields
Label(�frame_entry, text = "Enter username: ").grid(row = 0,

column = 0, padx = 5, pady = 5)

13

D
E

V
E

LO
P

IN
G

 A
N

 A
P

P
LI

C
A

T
IO

N
 U

S
IN

G
 T

K
IN

T
E

R

105

entry_username = Entry(frame_entry, width = 15, bg = "white")
entry_username.grid(row = 0, column = 1, padx = 5, pady = 5)

Label(�frame_entry, text = "Enter password: ").grid(row = 1,
column = 0, padx = 10, pady = 10)

The parameter show = "*" will cause asterisks to appear
instead of the characters typed by the user
entry_password = Entry(frame_entry, width=15, bg = "white",
 show = "*")
entry_password.grid(row = 1, column = 1, padx = 5,pady = 5)

#place the submit button
submit_button = Button(frame_buttons, text = "Submit",
 width = 8, command = submit)
submit_button.grid(row = 0, column = 0, padx = 5, pady = 5)

#place the Hint button
hint_button = Button(frame_buttons, text = "Password hint",
 width = 15, command = hint)
hint_button.grid(row = 0, column = 1, padx = 5, pady = 5)

#run mainloop
root.mainloop()
print("carry on now...")

106

LE
A

R
N

IN
G

 T
O

 P
R

O
G

R
A

M
 I

N
 P

Y
T

H
O

N

13

Sample Application 3
This application allows a user (for example, a teacher) to create a multiple choice test
consisting of several questions which could be saved in a text file or database. The
input window will look like this:

The skeleton code is given below. There are several new features covered in the code.
Notes below the code explain the lines indicated by Note 1, Note 2 etc.

#Program name: Ch13 Sample app 3 multiple choice test entry.py
#Program to allow entry of questions for a multiple choice test
#Questions and correct answer are printed
#and could be sent to a file for permanent storage
from tkinter import *
from tkinter import ttk� Note 1

functions executed when a button is pressed
def submit():

if questionNumber.get() == "1":
print("Test name", testname.get())

print("Question number: ",questionNumber.get())
print("Question stem: ",questionStem.get(1.0,END))� Note 2
print("Possible answers: ")
print(possibleAnswers.get(1.0, END))
print("Correct answer: ", correctAnswer.get(), "\n")

119

I

IN
D

E
XIndex

A
arithmetic operators, 3
ASCII code, 38
assignment statement, 5
attribute, 72
augmented assignment

operators, 6

B
Boolean

conditions, 18
expressions, 19
variable, 18

break statement, 26

C
clear() function, 100
close() method, 77
combo box, 108
comma separator, 6
comments, 12
commit() method, 77, 85
compiler, 1
concatenate, 2
connection object, 76
console window, 12
container data types, 44
conversion functions, 15
cursor object, 77

D
data type

Boolean, 4
numeric, 2
string, 2

database
flat file, 71
query, 72, 81

database table
add new record, 73
create, 77
delete a record, 74
update a record, 74

del, 46

dictionary, 44
methods, 45

div, 3
docstring, 52

E
Editor window, 11
elif, 18
end

in print statement, 8, 63
escape sequence, 7, 32
executemany, 80

F
field, 60, 72
file

open, 60
process, 65
read, 61, 63
write, 64

flag, 40
flat file database, 71
float() function, 15
floating point, 2
for loop, 22
format

check, 37, 41
modifier, 69
operator, 68
output, 68

frame, 96
place in window, 99

function, 16, 50, 55
built-in, 50
conversion, 15
parameters, 52
programmer-written, 51
return values, 52

G
Geometry Manager

Grid, 91
Pack, 91
Place, 92

global variable, 57

Graphical User Interface, 88
GUI, 88

I
identifier, 4, 72
IDLE, 1
indexing strings, 26
input statement, 9
inputting numbers, 14
int() function, 15
integer, 2
integer division, 3
integrated development

environment, 1
interactive

mode, 1
window, 2

interpreter, 1
interrupt execution, 28, 115
iteration, 17

J
justify

left or right, 109

K
kill program, 28

L
lambda keyword, 48
length check, 37
list, 29

append, 31
methods, 30
two-dimensional, 33

local variable, 56
logic error

finding, 115
logical operator, 4
long statement, 8

M
mainloop(), 93, 109
message box, 102

120

LE
A

R
N

IN
G

 T
O

 P
R

O
G

R
A

M
 I

N
 P

Y
T

H
O

N

I

method, 16
methods

string, 12
mod, 3
mode

append, 64
write, 64

multi-line statement, 8
mutable, 44

N
nested loops, 23
nested selection statement, 19
newline, 7
None keyword, 30

O
object, 4, 12
open

mode, 61
operator

logical, 4
relational, 4

output
formatted, 67

P
pack() method, 90
padding, 93
parameters, 52
pdb module, 115
placing widgets, 91
planning a program, 110
primary key, 72
print, 6

on same line, 8
procedure, 50, 55
pseudocode, 111
Python Shell window, 2, 11

Q
quote mark, 2

R
randint() function, 20
random number, 20
record, 60, 72
regular expression, 41
relational operator, 4
return values, 52, 54, 55
root window, 57, 98
round() function, 3

S
script mode, 1, 11
selection, 17
separator, 7
sequence, 17
Shell window, 2
slicing strings, 27
sort

list, 47
table, 48

spaces
in statements, 4

SQL, 72
command, 77

SQLite, 76
str() function, 7, 15
string, 2
string processing, 25
Structured Query Language, 72
submit() function, 100
subroutine, 50
syntax error, 13

T
tab, 7, 32
terminate program, 28
test plan, 113
text file, 59
Tkinter module, 88
trace, 115
trapping errors, 38, 84
triple quotes, 8, 52
try … except, 38, 84
ttk module, 109
tuple, 35
type check, 38

V
validation, 37
variable

global, 57
local, 56
name, 4, 5

W
while loop, 24
widget, 90

button, 90
combo box, 108
label, 91
place in window, 91
text, 109

window
close, 103
master, 98
setting parameters, 93

with connection, 85

Learn
in

g
 to

 P
ro

g
ram

 in
 P

yth
o

n
P

M
 H

e
ath

c
o

te

ISBN: 978-1-910523-11-7

This book is intended for individuals and students
learning to program. You may already have done
some programming in other languages, but not be
familiar with Python. Novice programmers should
work through the book sequentially, starting at
Chapter 1. It will also be a useful reference book
for students on a programming course or anyone
working on a programming project.

It teaches basic syntax and programming
techniques, and introduces three built-in
Python modules:

• Tkinter, used for building a graphical user
interface, which is an option that some users
may like to include in their project work.

• SQLite, which enables the creation and
processing of a database from within a Python
program. This provides an alternative to writing
to a text file when data needs to be stored
and retrieved.

• pdb, Python’s debugging module, which can be
used to help find elusive logic errors.

Questions and exercises are included in every
chapter. Answers to these, as well as over 120
Python programs for all the examples and exercises
given in the book, may be downloaded from
www.pgonline.co.uk. These programs enable
users of the book to try out the in-text examples
and check possible solutions to the exercises.

PM Heathcote

>>

>>

Python
Learning to Program in

Python
Learning to Program in

Cover picture:
‘Fosse No.4’
Oil on linen,
30x30cm © Barbara Burns 2015
www.slaneart.com

	Front cover
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Index

